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Background and motivation 
2015  Paris Agreement “conference of the parties” (COP21) [20]

• 148 Parties signed
• Limit greenhouse gasses by 2020
• Limit global average temperature rising to below 2°C above pre-industrial 

levels

1916 2016

Figure1: Average global temperature from 1916 and 2016, where blue indicates areas cooler than average and red warmer than 
average [15].
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Background and motivation
South Africa implementation of COP21 [6,19]

Integrated resource plan (IRP) for energy
• Northern Cape "Solar Corridor“

• Solar PV
• Concentrated solar power
• 18GW

• Eastern, Western and parts of Northern Cape
• Wind options
• 37 GW

Figure 2: Average horizontal irradiance [4]

Figure 3: Average wind speed [5]
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Background and motivation
Direct and indirect effects on land use change (LUC 
and iLUC) [14]

• Effect of using arable and grasslands 
• Effect on displacing activities to other areas
• Contribute, rather than mitigate CO2

A true carbon neutral process 
• Wastes from current crops being produced for food [16]

• Agricultural wastes (lignocellulose)
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Background and motivation
Composition of Lignocellulosic material [3,17]

• Cellulose
• Hemicellulose 
• Lignin

Lignin [1,7]

• 15-40 wt% biomass 
• 40% of energy content
• Major product of the paper and pulping industries (Kraft process)
• 98% directly burnt as low value fuel
• Contributes to global warming
• Utilising lignin reduces carbon footprint through carbon capturing

Figure 4: Typical lignocellulosic structure [2].  
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Background and motivation
Previous use of lignin [1,7,13]

• Direct combustion
• Gasification
• Pyrolysis

―High temperature conversion
―Energy intensive
―Heat loss during lignin combustion

• Hydrothermal liquefaction (HTL) [13]

• No pretreatment (drying of biomass)
• Fast process
• Moderate conditions
• Narrow distribution of small molecule products
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Background and motivation
Hydrothermal liquefaction (HTL) [1]

• Near critical water
• Temperature: 280-370°C
• Pressure: 10-25 MPa
• Produces biochar, bio-oil, aqueous phase and bio-gas

HTL of lignin
• Produced aromatic monomeric compounds without destruction of 

aromatic rings 
• High economic value aromatic compounds [17,1,13,11]

• Catechol
• Guaiacol
• Phenol
• Syringol
• Vanillin
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Background and motivation
Phenolic compound used for:[8]

• Pharmaceutical
• Fragrance
• Industrial usage

Current phenolic production
• Produced from petroleum-based phenolics[22,9,10,23,18]

• Hock process
• 95% of world's production
• Using benzene to produce phenol
• Lignin proven to produce similar phenolic compounds[8]

• Green and renewable source of phenolics 

Figure 5: Hock process for producing phenol[21]
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Research Aim & Objectives
Aim:
The aim of this study was to determine the optimal conditions for the 
production of good quality and high yielding phenolics from hydrothermal 
liquefaction of industrial sodium lignosulphonate

Objectives:
• The obtain the yield of phenolic compounds in the bio-product streams
• What process parameters can be manipulated to obtain specific phenolic 

compounds 
• What process parameters can be manipulated to minimalise biochar 

yields and maximise phenolic compounds
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Research Aim & Objectives – Overall picture
Phenolic prod. from 
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Research Aim & Objectives – This 
presentation
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Research Methodology

Figure 6: Batch HTL reactor (left) and removable heating jacket (right)
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Research Methodology

15min - 45min

5wt% - 50wt%
280°C - 300°C

25vol% - 75vol%

Manipulated variables
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Results: Non-polar-oil

Highest non-polar oil 
yield: 0.080 g/g lignin

p = 0.0147 p = 0.0741
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Results: Non-polar oil
CH- aromatic methoxyl 

groups (fatty acids)

Esters

Aromatic 
vibrations

Syringol and 
guaiacyl rings
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Results: Polar oil

Highest polar oil yield: 0.16 g/g 
lignin

p < 0.0001
p = 0.0067
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Results: Polar-oil

Aromatic vibrations

Syringyl and 
guaiacyl ringsCarbonyl/carboxyl 

groups
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Results: Total bio-oil
Consisted of 59-94 wt% of 
polar oils
Highest oil yield: 0.22 g/g 
lignin

p < 0.0001p < 0.0021
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Presentation Notes
Biomass loading determines the amount of carbon present in relation to the hydrogen molecules.  The higher the amount of carbon present compared to hydrogen from the water molecules, the lower the oil yield.  Furthermore volume loading determines the final system pressure whereby a higher volume loading would result in a higher pressure.  This would thus indicate a relationship between system pressure and the final overall oil yield



Results: Biochar

Highest char yield: 0.9 
g/g lignin
HHV of 27 MJ/kg

p = 0,1381 p = 0,0001
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Presentation Notes
In using a high biomass loading would result in more carbon present during the HTL process.  With the increased carbon content more of the energy put into the system would go towards the decomposition reactions which in turn produces biochar rather than repolymerisation reactions to form bio-oil.  Furthermore, the thermal decomposition of lignin occurs at a temperature of  between 280 and 300 degrees.  Thus, with the temperatures used in this study the decomposition reactions of waste lignin will be a dominant reaction as compared to the repolymerisation reactions to form condensables like bio-oil due to more energy needed for the decomposition of carbon from the waste lignin.  This can also be seen through the bio-gas yields, showing a strong influence on these operating parameters as compared to bio-oil yields.



Results: Biochar

Aromatic 
structures 

with CH- and 
C=C bands
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Results: Biogas

Highest biogas yield: 0.56 g/g 
lignin

p = 0,0024 p = 0,0740
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Presentation Notes
Thus it is suggested by using a low biomass loading a lower carbon content will be available for HTL.  A low volume loading would further result in a lower final pressure.  Therefore, with the interaction of a lower carbon content and lower pressure it is suggested that more than enough energy would be present not only for the decomposition of waste lignin into biochar but to enhance the hydrocracking of liquid phase into smaller fragments into biogas.  



Results: Aqueous phase - TOC

Highest TOC: 110 g/L

p = 0,0800 p = 0,0003
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Presentation Notes
It can be concluded that by increasing the biomass loading results in more carbon available for decomposition reaction, with the addition of higher temperatures would result in more free radicals forming due to the extra energy supplied to the system, and increase the decomposition of waste lignin.  Thus resulting in more carbon observed in the aq. phase.



Results: Aqueous phase - COD

Highest COD: 158 g/L COD

p = 0,0270 p < 0,0001
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Presentation Notes
A increase in carbon content coupled with a low pressure from the volume loading resulted in a higher COD content.  This can be attributed to the increase availability of carbon in the aq. Phase from decomposition reactions, which at a lower pressure results in oxygenates forming in the aq. Phase and staying in the aq. Phase rather than bio-oil, biochar or biogas.



Results: Aqueous phase – Water sol. phenol

Highest phenol content: 940 mL/L
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Conclusion

Biomass loading Volume loading Temperature Non-significant
Bio-oil
Biochar
Biogas
Aqueous phase:

TOC
COD

Total phenol

24



Thank you
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